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Outline
Overview of the hypothalmus-pituitary-testicular axis.
Introduce the deterministic model.

Reconsider the model as a stochastic model.

Analysis and discussion.
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Interesting Biology

Approximately 90% to 95% of testosterone in men is produced by the
testes with typical blood testosterone levels in the range of 3 to 10 ng/mL.
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Interesting Biology

Approximately 90% to 95% of testosterone in men is produced by the
testes with typical blood testosterone levels in the range of 3 to 10 ng/mL.

These levels have been experimentally observed to oscillate with a period
of about 2 to 3 hours.

An imbalance can cause dramatic changes (mood, acne, and weight).

Pathway Is associated with many other important processes in the body.
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The Hypothalmus-Pituitary-Testicular Axis
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The System
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Experimental Observations
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The Deterministic Model

If we represent the concentrations of GnRH, LH, and T by R(t), L(t), and T(t),
respectively, then a proposed deterministic model of this system is

dR
= f(T)—b
dL
= = giR — byL

dT’
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= f(T)—b
dL
= = giR — byL
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History of the Model

Goodwin (1964) first proposed the model to demonstrate oscillatory
behavior in enzymatic control processes.
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History of the Model

Goodwin (1964) first proposed the model to demonstrate oscillatory
behavior in enzymatic control processes.

Smith (1980) studied slight variation involving a Hill coefficient in f(7T').

Murray (1989) suggested using a time-delay in the production rate of 7.

Enciso and Sontag (2004) proved that the system has a globally stable
fixed point (regardless of the length of the time-delay) and therefore does
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The Fixed Point

The system of differential equations has a fixed point wherever
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The system of differential equations has a fixed point wherever

1
RY = — £(T*
(1)
=R
b2
T =21




MODELING PULSATILE BLOOD TESTOSTERONE LEVELS 9

Stability of the Fixed Point

The characteristic equation of the linearized system near the fixed point is

(A+b1)(A+D2)(A+b3) — f(T")g1g2 = 0

which only has solutions with negative real parts, i.e. Re(\) < 0.
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Reconsider the Physical Basis of the Problem

Take seriously the fact that events, such as the production or degradation of
hormone molecules, occur in an essentially random manner. Intrinsic
fluctuations play an important role when there are low numbers of molecules
present.
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Reaction Probability Density Function

When will the next event occur and what type of event will it be?
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Density Function Contd...
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Density Function Contd...

Let
§)
ag — Z a;
1=1

then we have

Po(t + dt) = Pg(t)(l — agdt)




MODELING PULSATILE BLOOD TESTOSTERONE LEVELS 12

Density Function Contd...

Let

§)
ag — E a;
1=1

Po(t + dt) = Pg(t)(l — agdt)
or, rearranging a little, we have

then we have




MODELING PULSATILE BLOOD TESTOSTERONE LEVELS 12

Density Function Contd...

Let

§)
ag — E a;
1=1

Po(t + dt) = Pg(t)(l — ant)
or, rearranging a little, we have

then we have




MODELING PULSATILE BLOOD TESTOSTERONE LEVELS

Density Function Contd...

So we have

P(t,p)dr = Py(1)a,dr
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Schematic of the Density Function

From Gillespie (1976).
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The Probabillity Distribution Function
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The Probabillity Distribution Function

To generate a random value = according to a given density function P(x) we
need to use the inversion method, by which we simply draw a random number
r from the uniform distribution in the unit interval and take = such that

F(x)=r or z=F'(r)
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The Probabillity Distribution Function

F(z) = / " P

To generate a random value x according to a given density function P(x) we
need to use the inversion method, by which we simply draw a random number
r from the uniform distribution in the unit interval and take = such that

F(x)=r or z=F'(r)
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Our Distribution Functions
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The Stochastic Formulation

We need to convert concentrations to numbers of molecules and reaction rate
parameters to probability transition rates. For the deterministic model, we

have suggested and experimentally measured values listed in the literature. A
dimensional analysis shows

mass?

[A] — 2 .
volume“min
NESS

mass
K] = volume
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The Stochastic Formulation
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We need to convert concentrations to numbers of molecules and reaction rate
parameters to probability transition rates. For the deterministic model, we

have suggested and experimentally measured values listed in the literature. A
dimensional analysis shows

mass?

: : mass
.A] — 2 . K] —
volume“min volume
: mass\ 1 : 1
1] = [92) = (=) — b1] = [b2] = [ba] = —

min
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A Stochastic Simulation
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Simulation of hormone secretion for physical parameter values, A = 104, K = 107",
b, = 0.23, by = 0.032, b3 = 0.046, g; = 0.2618, and g = 0.9015. Average number of
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A Stochastic Simulation
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Period Sensitivity Analysis
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A Stochastic Simulation
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Simulation of hormone secretion for parameter values, A = 1074 K = 1077, by = 0.23,
b, = 0.07,b3 = 0.1, g1 = 0.2618, and g5 = 0.9015. Average number of molecules are
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A Stochastic Simulation
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Lomb Spectral Analysis
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The largest peak corresponds to a frequency of 2.3429 x 10~ * Hz.
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Threshold Phenomenon
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Simulation to illustrate the threshold phenomenon. Parameter values are A = 10~ !,
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Analogy to Harmonic Oscillator with Variable Damping

25

For further discussion of the threshold phenomenon, consider the system of
differential equations

dr _
dt 7
dy z Y

dt ~ 4 22+y2+0.1
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Example trajectory and phase curve for the harmonic oscillator with nonlinear damping. Initial
conditions are x(0) = 3 and y(0) = 6.
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Variable Damping Phase Portrait
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Variable Damping Threshold Phenomenon
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Conclusions

By approaching the hormone model from a different physical basis we saw
how intrinsic fluctuations can incite oscillations for low numbers of
molecules.

Even though the deterministic model has a globally stable fixed point, the
stochastic model was able to capture the pulsatile behavior of the blood
hormone levels.
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Future Work

Do a Poincaré-map-like analysis of the oscillations we see with the
stochastic model and study the resulting distribution.

Further details can be incorporated into the model, such as basal hormone
secretion, temporal shifts, and additional negative feedback relationships in

the signaling pathway.

The model can be tested to see if intrinsic fluctuations are still significant
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